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Abstract

There has been significant research effort in the academic literature related to Air
Traffic Flow Management (ATFM). Yet, the research has not been fully implemented in
practice. In our opinion, the key reasons are - i) the existing network models approach the
problem from the point of view of a central decision-maker without taking into account
the airlines to a significant degree; and ii) the notions of fairness as introduced under the
Collaborative Decision-Making (CDM) paradigm operate under a single-airport setting
and do not address network effects (presence of multiple airports, sectors and various
connectivity requirements). In this paper, we address these shortfalls by presenting a
proposal which alleviates both these concerns. In stage I of our proposal, we present
network models that incorporate a notion of fairness - controlling number of reversals
and total amount of overtaking. In stage II, we allow for further airline collaboration
by proposing a network model for slot reallocation. We provide empirical results of the
proposed optimization models on national-scale, real world datasets spanning across six
days that show interesting tradeoffs between fairness and efficiency. We report promising
computational times of less than 30 minutes for up to 25 airports and provide theoretical
evidence that illuminates the strength of our formulations.

1 Introduction

The sustained growth of the aviation industry has put a tremendous strain on the available
resources of the air transporation system. This is evidenced by the steady increase in flight
delays and severe congestion at airports. In 2008, approximately 22% of the flights in the
United States were delayed by more than 15 minutes, while another 2% were cancelled
(Bureau of Transportation Statistics [17]). Moreover, during the 12-month period ending in
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September 2008, 138 million minutes of system delay led to an estimated $10 billion in costs
for US airlines [1].

Air Traffic Flow Management (ATFM) refers to the set of strategic processes that try
to reduce congestion costs and support the goal of safe, efficient and expeditious aircraft
movement. ATFM procedures try to resolve local demand-capacity mismatches by adjusting
the aggregate traffic flows to match scarce capacity resources. Ground Delay Programs
(GDPs) are one of the most sophisticated ATFM initiatives currently in use that attempt
to address airport arrival capacity reductions. Under this mechanism, delays are applied
to flights at their origin airports that are bound for a common destination airport which is
suffering from reduced capacity or excessive demand. The premise for this tool is that it
is better to absorb delays for a flight while it is grounded at its origin airport rather than
incurring air-borne delay near the affected destination airport which is both unsafe and more
costly (in terms of fuel costs). Airspace-Flow Programs (AFPs) are another tool that were
introduced recently in 2007 and are similar to GDPs in terms of operational details. FAA
uses this tool to control arrival rate into a Flow Constrained Area (FCA), e.g., a weather
affected segment of the airspace. Some of the other ATFM tools include assigning air-borne
delays, dynamic re-routing and speed control. We briefly review the literature on the existing
ATFM tools below.

Odoni [12] first conceptualized the problem of scheduling flights in real time in order to
minimize congestion costs. Thereafter, several models have been proposed to handle different
versions of the problem. The problem of assigning ground-delays in the context of a single-
airport (Single-Airport Ground-Holding Problem) has been studied in Terrab and Odoni [15],
Richetta and Odoni [13], [14]; and in the multiple airport setting (Multi-Airport Ground-
Holding Problem) in Terrab and Paulose [16], Vranas et al. [20]. The problem of controlling
release times and speed adjustments of aircraft while air-borne for a network of airports
taking into account the capacitated airspace (Air Traffic Flow Management Problem) has
been studied in Bertsimas and Stock [5], Helme [9], Lindsay et al. [11]. The problem with
the added complication of dynamically re-routing aircrafts (Air Traffic Flow Management
Rerouting Problem) was first studied by Bertsimas and Stock [6]. Recently, Bertsimas et
al. [7] have presented a new mathematical model for the ATFM problem with dynamic re-
routing which has superior computational performance. For a detailed survey of the various
contributions and a taxonomy of all the problems, see Bertsimas and Odoni [4] and Hoffman et
al. [10]. It is important to highlight that network formulations present significant challenges
of computational tractability, and so far few network models have been able to incorporate
equity considerations effectively. Despite the significant progress outlined here, this set of
literature while addressing network effects (presence of multiple airports, sectors and various
connectivity requirements), takes the point of view of a single decision-maker and does not
address the issue of fairness among airlines.

We review next some other important concepts in the ATFM literature - namely, Col-
laborative Decision-Making (CDM) and Ration-by-Schedule (RBS). The decision-making re-
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sponsibilities in ATFM initiatives are shared between a number of stakeholders (primarily,
airlines and the FAA). This poses a major challenge as their actions are highly interdepen-
dent and demand real-time exchange of information between the FAA and the airlines. This
realization of enhanced cooperation between the various stakeholders led to the adoption of
Collaborative Decision-Making (CDM) philosophy (Ball et al. [2], Wambsganss [21]) by the
FAA in the 1990s. Under CDM, all ATFM initiatives are conducted in a way that gives sig-
nificant decision-making responsibilities to airspace users (see Hoffman et al. [10] for details
on CDM). All recent efforts to improve ATFM have been guided by this philosophy. In the
US, “Ration-by-Schedule” (RBS) is the fundamental principle for all the CDM initiatives.
Under this paradigm - arrival slots at airports are assigned to flights in accordance with a
first-scheduled, first-served (FSFS) priority discipline (see Ball et al. [2], Wambsganss [21]
for details on rationing). In the case of GDP and AFP planning, all stakeholders have agreed
that this principle is fair to all parties. This allocation process is followed by a Compression
algorithm, which fills open slots created by flights that are canceled. The compression pro-
cedure gives airlines an incentive to report accurate flight information, by rewarding them
for reporting cancellations. The combined process, RBS plus Compression (formally called
RBS++) is the policy currently in use for slot allocations. Despite the use of RBS in a GDP
setting, there have been no network models that satisfy the RBS principle in a multi-airport
setting. This is because, applying RBS to each of the airports individually might not lead to
a schedule that preserves time, sector and flight connectivities. In addition, the imposition
of a maximum permissible delay on each flight (as required by any tractable optimization
model) would mean that a feasible solution under RBS might not even exist if the capacity
reduction at some airports is significant. Hence, there is no straightforward extension of
RBS from a single-airport setting to an airspace context. As part of the CDM philosophy,
researchers have also explored dynamic interaction with airlines. Towards this aim, Vossen
and Ball [19] [18] have studied opportunities for slot trading in a single-airport setting where
the aim is to formalize an optimization problem for the FAA given the offers to trade from
various airlines. In summary, the CDM concepts discussed here while addressing the issues
of fairness among airlines in a single-airport setting, do not address network effects.

Our goal in this paper is to propose an optimization based approach that a) incorporates
network effects and builds upon the ATFM literature; and b) takes into account fairness con-
siderations among airlines by building upon the CDM philosophy. Specifically, our proposal
consists of the following two stages:

Stage I - Network ATFM model incorporating fairness:
We generalize the classical ATFM models ([5]) to incorporate fairness considerations for
airlines. The objective function used in the existing network ATFM models is to minimize the
total delay costs across all flights, i.e., the focus is on overall system efficiency. A disadvantage
of such an approach is that the solution to such models can have a large number of reversals,
i.e., the resulting order of flight arrivals can be quite different as compared to the published
flight schedules. Specifically, for two flights f and f ′ arriving at the same destination airport,
a reversal occurs if f was scheduled to arrive before f ′ but f ′ arrives before f in the actual
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schedule. Moreover, across these reversals, there might be different number of time-periods
of overtaking. Concretely, the duration between the arrival of flights f ′ and f constitute
the amount of overtaking. Consequently, the total overtaking across these reversals might
be large. Because of this deviation from the original flight ordering, it becomes difficult to
implement such a solution because of the coupling in the crew assignments and the use of
hub and spoke networks. We propose discrete optimization models that add these fairness
controls. The key output in this stage is the assignment of flights to different time periods.

Stage II - Slot reallocation through airline collaboration:
We generalize the notion of intra-airline exchange of arrival slots, a key component of the
current CDM practice in a single-airport setting to network-wide slot reallocation among
airlines. Specifically, we propose an optimization model which takes as input the assignment
of flights to different time periods from Stage I and permits the airlines to trade these assigned
slots across different airports, thereby, resulting in improved internal objective functions. The
model proposed for Stage II of our proposal allows airlines to react to the schedule determined
in Stage I by taking into account their flights in the entire network and making appropriate
tradeoffs.

Contributions of this work

We feel our work makes the following contributions:

1. We present a proposal for the network ATFM problem which incorporates both fairness
and airline collaboration while operating under a broad CDM paradigm. Specifically,
we formulate discrete optimization models to impose fairness controls in Stage I and a
model for slot reallocation in Stage II.

2. We provide empirical results of the proposed optimization models on national-scale, real
world datasets spanning across six days. We report promising computational times of
less than 30 minutes for up to 25 airports and provide theoretical evidence on the
strength of our formulations.

Simultaneously, Barnhart et al. [3] develop an alternative way to address fairness in the
context of ATFM. They develop a fairness metric that measures deviation from FSFS and
propose a discrete optimization model that directly minimizes this metric. They further
develop an exponential penalty approach, and report encouraging computational results using
simulated regional and national scenarios. In contrast to this work, our paper differs in the
following respects: a) we provide an exact method to model overtaking within a mathematical
programming framework while [3] proposes an approximate method. In addition, we propose
another, although related, metric of fairness - controlling the number of reversals; b) we
explicitly model network effects that [3] does not; and c) our proposal consists of a slot
reallocation phase (Stage II) which enables airlines to implicitly trade their internal objective

4



functions to derive more utility. In summary, both papers contribute to the understanding
of fairness in ATFM by approaching the problem from distinct perspectives.

Organization of the paper

Section 2 summarizes an adaptation of the Bertsimas Stock-Patterson model [5] in order to
accommodate our proposal. Section 3 introduces models of fairness. Section 4 introduces
our model of slot reallocation. Section 5 discusses how our proposal can be integrated
with the current CDM practices. Section 6 reports computational results of the proposed
optimization models on six days of national-scale, real world datasets. Section 7 summarizes
our conclusions and the Appendix reports polyhedral analysis that illuminates the strength
of our proposed formulations.

2 ATFM Problem: Notation, Bertsimas Stock-Patterson Model

and Solutions

In this section, we reproduce the Bertsimas Stock-Patterson model [5] for the ATFM problem
which provides the starting point for all the models presented herein. We use an extended
version of the notation used in that paper in order to accommodate fairness and slot reallo-
cation considerations. Finally, we illustrate difficulties relative to fairness considerations in
the solutions obtained from this model.

The Decision Variables

The decision variables are:

wfj,t =

{
1, if flight f arrives at sector j by time t,

0, otherwise.

This definition of the decision variables, using “by” instead of “at”, is critical to the under-
standing of the formulation. The variables are defined only for the set of sectors an aircraft
may fly through on its route to the destination airports. In addition, variables are used for
the departure and the arrival airports, in order to determine the optimal times for departure
and for arrival. Since we do not consider flight cancellations, at least two variables can be
fixed a priori for each flight: each aircraft has to take off by the end of a feasible time window
and has to land, as well, within a feasible time window, which is determined by the time of
departure.
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Notation

The model’s formulation requires definition of the following notation:

K : set of airports,

F : set of flights,

T : set of time periods,

W : set of airlines,

Fw ⊆ F : set of flights belonging to airline w,

S : set of sectors,

Sf ⊆ S : sequence of sectors flown by flight f,

C : set of pairs of flights that are continued,

Rj : set of pairs of flights that are reversible in resource j (definition below),

RS : set of pairs of flights that are reversible in sectors (definition below),

RA : set of pairs of flights that are reversible at airports (definition below),

Pfi : sector i’s preceding sector in the path of flight f,

Lfi : sector i’s subsequent sector in the path of flight f,

Dk(t) : departure capacity of airport k at time t,

Ak(t) : arrival capacity of airport k at time t,

Sj(t) : capacity of sector j at time t,

df : scheduled departure time of flight f,

ajf : scheduled arrival time of flight f in resource j,

sf : turnaround time of an airplane after flight f,

origf : airport of departure of flight f,

destf : airport of arrival of flight f,

lfj : minimum number of time units that flight f must spend in sector j,

M : maximum permissible delay for a flight,

T fj : set of feasible time periods for flight f to arrive in resource j,

T fj : first time period in the set T fj ,

T
f
j : last time period in the set T fj ,

T reversal
f,f ′,j : set of time-periods common for flights f and f ′ where a reversal could occur in resource j

(definition below),

Omax
f,f ′,j : maximum amount of overtaking possible between flights f and f ′ in resource j

(definition below),

O : set of all possible trades (definition in Section 4),

Of ⊆ O : set of offers containing flight f,

cf : time period assigned to flight f from Stage I optimization.
6



The key additions relative to the notation used in [5] are W, Fw, Rj , RS , RA, T reversal
f,f ′,j ,

Omax
f,f ′,j , O, Of ⊆ O and cf .

The sets Rj, RS and RA

We give next the definition of Rj (set of pairs of flights that are reversible in resource j).
We make a distinction between the case when the resource j is a sector and when it is an
airport.

Definition 2.1. For an airport k ∈ K, a pair of flights (f, f ′) belongs to Rk if the following
two conditions are satisfied:

1. destf = destf ′ = k, i.e., the destination airport of both flights f and f ′ is the same.

2. akf ≤ akf ′ ≤ akf + M , i.e., the scheduled time of arrival of flight f ′ at the destination
airport lies between the scheduled time of arrival of flight f and the last time period
in the set of feasible time periods that the flight f can arrive at its destination airport.

Definition 2.2. For a sector j ∈ S, a pair of flights (f, f ′) belongs to Rj if the following
two conditions are satisfied:

1. j ∈ Sf and j ∈ Sf ′ , i.e., sector j is common to the path of flights f and f ′.

2. ajf ≤ a
j
f ′ ≤ a

j
f +M , i.e., the scheduled time of arrival of flight f ′ in sector j lies between

the scheduled time of arrival of flight f and the last time period in the set of feasible
time periods that the flight f can arrive in sector j.

For each pair of flights (f, f ′) ∈ Rj , we count a reversal, if in the resulting solution, flight
f ′ arrives before flight f in resource j (i.e., ∃t such that wf

′

j,t > wfj,t). We call the reversals
occurring in sectors as sector reversals and the reversals occurring at the airports as airport
reversals. This clustering is motivated from fairness considerations in a network setting and
is elaborated upon later in Section 3.

Definition 2.3. The set of pairs of flights that are reversible in sectors (RS) and at airports
(RA) is defined as:

1. RS =
⋃
j∈S Rj

2. RA =
⋃
k∈KRk

The set T reversal
f,f ′,j and parameter Omax

f,f ′,j

Definition 2.4. The set T reversal
f,f ′,j (set of time-periods common for flights f and f ′ where a

reversal could occur) is defined as {T f
′

j , . . . , T
f
j − 1}.
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To elaborate on Definition 2.4, T reversal
f,f ′,j is the set of time-periods t, such that it is possible

to have the following assignment: wfj,t = 0 and wf
′

j,t = 1. This assignment would imply that
a reversal occurs at time t.

Definition 2.5. The parameter Omax
f,f ′,j is defined as |T reversal

f,f ′,j | (cardinality of the set T reversal
f,f ′,j ),

and hence is equal to T fj − T
f ′

j − 1.

To elaborate on Definition 2.4, Omax
f,f ′,j is the maximum amount of overtaking possible

between flights f and f ′ and would be attained when wf
j,T

f
j−1

= 0 and wf
′

j,T f ′
j

= 1.

Example 2.1. Figure 1 depicts a reversible pair of flights (f, f ′) ∈ RA. Let destf = destf ′ =
k. In this example, the arrows correspond to the set of time-periods common for both flights.
Moreover, the set of time-periods marked by these arrows (except for the last one) constitute
T reversal
f,f ′,k . This is because, the model enforces wf

k,ak
f+M

= 1 at the outset and hence, it is not

possible to have a reversal at akf +M . Finally, Omax
f,f ′,k = |T reversal

f,f ′,k | = 6.

PSfrag replacements
akf

akf +M

akf ′

akf ′ +M

Feasible times of arrival for flight f
Feasible times of arrival for flight f ′

T reversal
f,f ′,k

Figure 1: A reversible pair of flights (f, f ′) ∈ RA (destf = k).

The Objective Function

We use an adapted expression for total delay (TD) cost for each flight introduced recently
in Bertsimas et al. [7]. The total delay (TD) cost is a combination of the costs of air-borne
delay (AD) and ground-holding delay (GD) (TD = GD + α · AD, where α > 1 because
air-borne delay is typically more costly than ground-holding delay). By substituting AD in
terms of TD (i.e., AD = TD−GD), the objective can be rewritten as α ·TD− (α− 1) ·GD.

Consequently, the objective function is composed of two terms: a first term that takes
into account the cost of the total delay assigned to a flight and a second term which accounts
for the cost reduction obtained when a part of the total delay is taken as ground delay at
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the origin airport. The objective function cost coefficients are a super-linear function of the
tardiness of a flight of the form (t− akf )1+ε, with ε close to zero. Hence, for each flight f and
for each time period t, we define the following two cost coefficients:

cftotal(t) = α(t− akf )1+ε : total cost of delaying flight f for (t− akf ) units of time,

cfg (t) = (α− 1)(t− df )1+ε : cost reduction obtained by holding flight f on the

ground for (t− df ) units of time,

The motivation of using super-linear cost coefficients is that it will favor moderate assignment
of total delays between two flights rather than assigning much larger delay to one as compared
to the other flight. To elaborate, consider the following example:

Example 2.2. Suppose we wish to assign 2 units of delay to 2 flights. Then, an objective
function with linear cost coefficients is equally likely to generate the following two assign-
ments: i) 1 unit of delay to both flights and ii) 2 unit of delay to one flight and 0 to the
other. In contrast, super-linear cost coefficients (with ε = 0.001 for example) will assign 1
unit to both flights because 11.001 + 11.001 < 21.001 + 0.

In view of the above, the delay cost function for each flight f takes the following form: ∑
t∈T f

destf

cftotal(t) · (w
f
destf ,t

− wfdestf ,t−1)−
∑

t∈T f
origf

cfg (t) · (wforigf ,t
− wforigf ,t−1)


The TFMP model

The complete description of the model, referred to as (TFMP), is as follows:

IZTFMP = min
∑
f∈F

 ∑
t∈T f

destf

cftotal(t) · (w
f
destf ,t

− wfdestf ,t−1)−
∑

t∈T f
origf

cfg (t) · (wforigf ,t
− wforigf ,t−1)
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subject to:∑
f∈F :origf=k

(wfk,t − w
f
k,t−1) ≤ Dk(t), ∀k ∈ K, t ∈ T . (1a)

∑
f∈F :destf=k

(wfk,t − w
f
k,t−1) ≤ Ak(t), ∀k ∈ K, t ∈ T . (1b)

∑
f∈F :j∈Sf ,j′=Lf

j

(wfj,t − w
f
j′,t) ≤ Sj(t), ∀j ∈ S, t ∈ T . (1c)

wfj,t − w
f
j′,t−lfj′

≤ 0, ∀f ∈ F , t ∈ T fj , j ∈ S
f : j 6= origf , j

′ = Pfj . (1d)

wforigf ,t
− wf

′

destf ′ ,t−sf
≤ 0, ∀(f, f ′) ∈ C, ∀t ∈ T fk . (1e)

wfj,t−1 − w
f
j,t ≤ 0, ∀f ∈ F , j ∈ Sf , t ∈ T fj . (1f)

wfj,t ∈ {0, 1}, ∀f ∈ F , j ∈ Sf , t ∈ T fj . (1g)

The first three sets of constraints take into account the capacities of the various elements
of the system. Constraints (1a) ensure that the number of flights which may take off from
airport k at time t, will not exceed the departure capacity of airport k at time t. Likewise,
Constraints (1b) ensure that the number of flights which may arrive at airport k at time t,
will not exceed the arrival capacity of airport k at time t. Finally, Constraints (1c) ensure
that the total number of flights which may feasibly be in Sector j at time t will not exceed
the capacity of Sector j at time t.

The next three sets of constraints capture the various connectivities - namely sector,
flight and time connectivity. Constraints (1d) stipulate that a flight cannot arrive at Sector
j by time t if it has not arrived at the preceding sector by time t − lfj′ . In other words,
a flight cannot enter the next sector on its path until it has spent at least lfj′ time units
(the minimum possible) traveling through one of the preceding sectors on its current path.
Constraints (1e) represent connectivity between flights. They handle the cases in which a
flight is continued, i.e., the flight’s aircraft is scheduled to perform a subsequent flight within
some user-specified time interval. The first flight in such cases is denoted as f ′ and the
subsequent flight as f , while sf is the minimum amount of time needed to prepare flight f
for departure, following the landing of flight f ′. Constraints (1f) ensure connectivity in time.
Thus, if a flight has arrived at element j by time t̃, then wfj,t has to have a value of 1 for all
later time periods (t ≥ t̃).
Remark 1. Including aircraft or flight connectivities. In TFMP, flight connectivity
constraints are included as hard constraints, i.e., they need to be satisfied a priori based
on planned aircraft connections. In current practice, this is not exactly the approach taken
due to the presence of hub and spoke networks which motivate the use of bank of flights
arriving at a hub and then departing within a short duration of time. Nonetheless, we make
a modeling choice to keep these constraints as they enable stronger polyhedral structure
(thereby leading to shorter computational times) and are consistent with the original model
proposed by Bertsimas and Stock-Patterson. Nonetheless, in all the models presented in this
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paper, these constraints can be removed and our proposal will still remain entirely consistent
with its global objectives. Thus, this modeling is not a consequence of any other restrictions.

Solutions from (TFMP)

Here, we illustrate the difficulties relative to fairness considerations in the solutions obtained
from the formulation (TFMP). We report a solution from (TFMP) for one of the six datasets
on which we have performed our experiments in this paper. This dataset comprises of 5092
flights, 5 airlines, 55 airports and 100 sectors. The analysis is carried over 96 time-periods
each of duration 15 minutes. First, the total number of reversals in the resulting solution
is 915. Moreover, there are 1492 units of overtaking across these reversals. To put the
number of reversals in perspective, the maximum possible number of reversals is around
9500 (this is attained when maximum elements ofRA are reversed with the resulting schedule
remaining feasible). This indicates that the sequence of flight arrivals in the solutions from
(TFMP) differ significantly from the scheduled sequence of flight arrivals (note that if M was
large enough, then the schedule with 0 reversals would be considered most fair). These two
observations in the solutions obtained from the formulation (TFMP) is present across all the
six datasets. In the next section, we introduce discrete optimization models that control the
number of reversals and the amount of overtaking.

3 Network models that incorporate concepts of fairness

3.1 Minimizing the total amount of overtaking

A notion of fairness widely agreed upon by the airlines is to have a schedule that preserves
the order of flight arrivals at an airport according to the published schedules. As mentioned
in the Introduction, this is known as Ration-by-Schedule (RBS). But, given the capacity
reductions at the airports, it might not always be possible to have a feasible solution under
RBS in a network setting. A close equivalent to the RBS solution would be one which has
a small amount of overtaking. Hence, in such a scenario, a plan which minimizes the total
overtaking while keeping the total delay cost small might be a more desirable solution. As
the first approach, we present a model which achieves this objective. It is appropriate to
remark that this fairness criterion has considerable intuitive appeal as it naturally captures
the priorities inherent in the original airport arrival schedules.

For every reversible pair of flights (f, f ′) ∈ Rj , let gf,f ′,j denote the total amount of
overtaking between flights f and f ′. Then, we need to define the following set of variables
to express gf,f ′,j .

sif,f ′,j =

{
1, if flight f ′ arrives but f does not arrive by time T f

′

j + i in resource j,

0, otherwise.
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The definition above implies the following:

sif,f ′,j = 1 ⇐⇒
{
wf
j,T f ′

j +i
= 0, wf

′

j,T f ′
j +i

= 1
}

Table 1 summarizes the various feasible combinations of these variables under the above
definition. Thus, an alternative way to express sif,f ′,j is as follows:

sif,f ′,j = max
{
wf
′

j,T f ′
j +i
− wf

j,T f ′
j +i

, 0
}
. (2)

S.No. wf
j,T f ′

j +i
wf
′

j,T f ′
j +i

sif,f ′,j

1 0 0 0
2 0 1 1
3 1 0 0
4 1 1 0

Table 1: Truth table for modeling the overtaking variables.

Equation (2) implies that the following constraints suffice to express sif,f ′,j in a mathe-
matical programming framework if the objective is to minimize sif,f ′,j :

sif,f ′,j ≥ w
f ′

j,T f ′
j +i
− wf

j,T f ′
j +i

, (3a)

sif,f ′,j ≥ 0. (3b)

The set of variables sif,f ′,j are defined for i ∈ {0, . . . , Omax
f,f ′,j}. Now, gf,f ′,j ∈ {0, . . . , Omax

f,f ′,j}
can be defined as follows:

gf,f ′,j =

Omax
f,f ′,j∑
i=0

sif,f ′,j . (4)

We shall work with an alternative description of Equation (3a) to make the exposition on
overtaking clearer. We substitute i = t− T f

′

j in Equation (3a) to rewrite it as follows:

wf
′

j,t ≤ w
f
j,t + s

t−T f ′
j

f,f ′,j . (5)

We prove next that the following set of constraints are required to model overtaking between

(f, f ′) ∈ Rj if we use an objective function to minimize gf,f ′,j in addition with s
t−T f ′

j

f,f ′,j ≥
0, ∀t ∈ T reversal

f,f ′,j :

wf
′

j,t ≤ w
f
j,t + s

t−T f ′
j

f,f ′,j , ∀t ∈ T reversal
f,f ′,j . (6)
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Theorem 1. If we use an objective function of minimizing gf,f ′,j (the total amount of over-

taking for (f, f ′) ∈ Rj) in addition with s
t−T f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
f,f ′,j , then Constraint (6)

correctly captures the semantics of overtaking.

Proof. In case, there is no reversal, i.e.,

wf
′

j,t ≤ w
f
j,t, ∀t ∈ T

reversal
f,f ′,j ,

then Constraint (6) becomes reduntant. Since we minimize total amount of overtaking (and

s
t−T f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
f,f ′,j ), it forces:

s
t−T f ′

j

f,f ′,j = 0, ∀t ∈ T reversal
f,f ′,j ,

leading to gf,f ′,j = 0. On the contrary, if there are i units of overtaking, then ∃t ∈
{T f

′

j , . . . , T
f ′

j +Omax
f,f ′,j − i} such that:

wf
′

j,t−1 = 0, wf
′

j,t = 1,

wfj,t+i−1 = 0, wfj,t+i = 1.

Now, the time-connectivity constraints (Constraints (1f)) imply that:

wf
′

j,t+m = 1, wfj,t+m = 0, ∀ 0 ≤ m ≤ i− 1.

Constraint (6) then enforces

skf,f ′,j = 1, ∀ t ≤ k ≤ t+ i− 1.

Again, since we minimize total amount of overtaking (and s
t−T f ′

j

f,f ′,j ≥ 0, ∀t ∈ T reversal
f,f ′,j ), there-

fore,
skf,f ′,j = 0, ∀ 0 ≤ k < t, t+ i− 1 < k ≤ Omax

f,f ′,j ,

leading to gf,f ′,j = i. In summary, Constraint (6) (in addition with s
t−T f ′

j

f,f ′,j ≥ 0), correctly
model overtaking if the objective function is to minimize gf,f ′,j .

The proof of Theorem 1 relied critically on the assumption that we use an objective
function that minimizes gf,f ′,j . Next, we propose a formulation to model overtaking which
is independent of the objective function used. We propose a set of constraints that cap-
ture the convex hull of the four feasible integer points enumerated in Table 1, namely
(0, 0, 0), (0, 1, 1), (1, 0, 0) and (1, 1, 0). Figure 2 depicts the convex hull of these four points.
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We introduce the following set of constraints to model overtaking:

wf
′

j,t ≤ w
f
j,t + s

t−T f ′
j

f,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (7a)

wfj,t ≤ w
f ′

j,t + 1− s
t−T f ′

j

f,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (7b)

wfj,t + s
t−T f ′

j

f,f ′,j ≤ 1, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (7c)

−wf
′

j,t + s
t−T f ′

j

f,f ′,j ≤ 0, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (7d)

PSfrag replacements
wfj,t

wf
′

j,t

sif,f ′,j

Modeling overtaking

Figure 2: Convex hull of the integer points in Table 1 to model overtaking (i = t− T f
′

j ).

The TFMP model with the additional control on total amount of overtaking (referred to as
TFMP-Overtake henceforth) is as follows:
IZTFMP-Overtake =

min
∑
f∈F

 ∑
t∈T f

destf

cftotal(t) · (w
f
destf ,t

− wfdestf ,t−1)−
∑

t∈T f
origf

cfg (t) · (wforigf ,t
− wforigf ,t−1)

+

λos ·

 ∑
j∈S, (f,f ′)∈Rj

Omax
f,f ′,j∑
i=0

sif,f ′,j

+ λoa ·

 ∑
k∈K, (f,f ′)∈Rk

Omax
f,f ′,k∑
i=0

sif,f ′,k


subject to:

(1a)− (1g).

(7a)− (7d).

sif,f ′,j ∈ {0, 1}, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, i ∈ {0, . . . , Omax
f,f ′,j}.
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3.2 Minimizing the total number of reversals

The model introduced in Section 3.1 took into account the magnitude of overtaking within
each reversal. In this section, we introduce a model which controls the total number of
reversals.

For each element (f, f ′) ∈ Rj , we introduce the following new variable:

sf,f ′,j =

{
1, if there is a reversal,

0, otherwise.

Next, we relate the variables sf,f ′,j (used to model a reversal) to the variables sif,f ′,j (used
to model overtaking). It is evident that a reversal occurs if and only if there is at least one
time-period of overtaking. Mathematically, it translates to the following:

sf,f ′,j = 1 ⇐⇒
{
∃i ∈ {0, . . . , Omax

f,f ′,j}, sif,f ′,j = 1
}

(8)

Building upon Equation (8), we have the following:

sf,f ′,j = max
t∈T reversal

f,f ′,j

{
s
t−T f ′

j

f,f ′,j

}
,

sf,f ′,j = max
t∈T reversal

f,f ′,j

{
max{wf

′

j,t − w
f
j,t, 0}

}
,

sf,f ′,j = max
{

max
t∈T reversal

f,f ′,j

{wf
′

j,t − w
f
j,t}, 0

}
. (9)

Equation (9) implies that the following constraints suffice to express sf,f ′,j in a mathematical
programming framework if the objective is to minimize sf,f ′,j :

sf,f ′,j ≥ wf
′

j,t − w
f
j,t, ∀t ∈ T

reversal
f,f ′,j . (10a)

sf,f ′,j ≥ 0. (10b)

Equation (10a) can be rearranged as follows:

wf
′

j,t ≤ w
f
j,t + sf,f ′,j , ∀t ∈ T reversal

f,f ′,j . (11)

Theorem 2. If we use an objective function of minimizing sf,f ′,j, then Constraint (11) in
addition with sf,f ′,j ≥ 0 correctly captures the semantics of modeling a reversal.

Proof. In case, there is no reversal, i.e.,

wf
′

j,t ≤ w
f
j,t, ∀t ∈ T

reversal
f,f ′,j ,

then Constraint (11) becomes redundant. Since we minimize sf,f ′,j (and sf,f ′,j ≥ 0), it forces
sf,f ′,j = 0. On the contrary, if there is a reversal, then ∃t ∈ T reversal

f,f ′,j such that:

wf
′

j,t = 1, wfj,t = 0.

Constraint (11) then implies that sf,f ′,j ≥ 1. Again, minimizing sf,f ′,j makes sf,f ′,j = 1
ensuring that Constraint (11) indeed models a reversal correctly.
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The proof of Theorem 2 relied critically on the assumption that we use an objective func-
tion that minimizes sf,f ′,j . Here, we present a formulation that models a reversal correctly
independently of the objective function used. For each element (f, f ′) ∈ Rj , we introduce
the following constraints to (TFMP):

wf
′

j,t ≤ w
f
j,t + sf,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal

f,f ′,j . (12a)

wfj,t ≤ w
f ′

j,t + 1− sf,f ′,j , ∀(f, f ′) ∈ Rj , j ∈ S ∪ K, t ∈ T reversal
f,f ′,j . (12b)

If there is a reversal between flights f and f ′ in resource j, i.e., sf,f ′,j = 1, then Constraint
(12a) becomes redundant and Constraint (12b) stipulates that if flight f has arrived by time
t, then flight f ′ has to arrive by that time, hence ensuring that flight f cannot arrive before
flight f ′. Similarly, if there is no reversal, i.e., sf,f ′,j = 0, then Constraint (12b) becomes
redundant and Constraint (12a) stipulates that if flight f ′ has arrived by time t, then flight f
has to arrive by that time, hence ensuring that flight f ′ cannot arrive before flight f . Thus,
we are able to model a reversal with the addition of only one variable (sf,f ′,j).

Given this additional set of constraints, the model then minimizes a weighted combi-
nation of total delay costs and total number of reversals. The parameters λrs and λra are
chosen appropriately to control the degree of fairness in sector reversals and airport reversals
respectively.

(TFMP) extended with reversals: (TFMP-Reversal).

The TFMP model with the additional control on reversals is as follows:
IZTFMP-Reversal =

min
∑
f∈F

 ∑
t∈T f

destf

cftotal(t) · (w
f
destf ,t

− wfdestf ,t−1)−
∑

t∈T f
origf

cfg (t) · (wforigf ,t
− wforigf ,t−1)

+

λrs ·

 ∑
j∈S, (f,f ′)∈Rj

sf,f ′,j

+ λra ·

 ∑
k∈K, (f,f ′)∈Rk

sf,f ′,k


subject to:

(1a)− (1g).

(12a)− (12b).

sf,f ′,j ∈ {0, 1}, ∀(f, f ′) ∈ Rj , j ∈ S ∪ K.

For each element (f, f ′) ∈ Rj , let IPReversal(f, f ′, j) denote the set of all feasible binary
vectors satisfying Constraints (12a) and (12b). We show in the Appendix that the polyhedron
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induced by Constraints (12a) and (12b) is the convex hull of solutions in IPReversal(f, f ′, j).

IPReversal(f, f ′, j) =
{
wfj,t ∈ {0, 1}, sf,f ′,j ∈ {0, 1}|

wf
′

j,t − w
f
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wfj,t − w
f ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}
Remark 2. RBS Policy - a special case of (TFMP-Reversal). When there is sufficient
capacity at all airports, such that a feasible solution under RBS exists (i.e., there are no
reversals), this model is capable of generating that solution (using a sufficiently high λra)
while minimizing the total delay costs. Hence, a solution under RBS policy is a special case
of our model. Since, a solution under RBS preserves the order of flight arrivals, therefore,
for every pair of flights (f, f ′) ∈ RA, the variable sf,f ′,destf

= 0, and Constraints (12a) and
(12b) reduce to Constraint (13) which ensures that flight f ′ cannot arrive before flight f :

wf
′

destf ′ ,t
≤ wfdestf ,t

, ∀(f, f ′) ∈ RA, t ∈ T reversal
f,f ′,destf

. (13)

3.3 Prioritizing between airport reversals and sector reversals

In Section 3.2, we introduced a discrete optimization model with the capability of controlling
sector reversals in addition to airport reversals. In this section, we discuss the relative merits
of controlling sector reversals. In Section 6.6, we report empirical evidence to validate our
conclusions.

To start with, it seems reasonable to expect that primary stakeholders (airlines and
flying passengers) won’t be bothered as to how the en-route resources are allocated if they
are satisfied with the final outcome of the arrival sequences at the airports. In fact, this
scheme of things would be acceptable to the FAA as its key objective in designing various
ATFM programs is to satisfy these primary stakeholders. In addition to this observation, we
feel there are two key arguments in favor of controlling sector reversals:

1. AFPs. The first pertains to the operational details of AFPs (one of the recent ATFM
programs) under the current CDM practice. The recently introduced AFPs operate
much like GDPs, i.e., the arrival slots in the affected airspace are allotted using the
RBS principle. Therefore, in a scenario where multiple AFPs and GDPs operate si-
multaneously, a natural extension of fairness is controlling reversals in the en-route
airspace affected by an AFP. To elaborate, we give the following example:

Example 3.1. Consider the scenario depicted in Figure 3. There is an AFP operational
in the en-route airspace followed by a GDP at BOS (Boston). Simultaneously, there
is another airport LGA (New York LaGuardia) nearby with no GDP. There are two
streams of flights going through the AFP to one of these airports. In a scenario where
sector reversals in the AFP are not controlled, a schedule with no airport reversals might
be such that all flights going to BOS are allowed to go first before any other flight to
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LGA through the AFP. Such a plan might not be acceptable to the stakeholders of LGA
because all flights destined to LGA are assigned large delays even though they are part
of an ATFM program (the AFP in this case). This might get further exacerbated in a
scenario where LGA (the non-GDP airport) is a hub airport for a particular airline, in
which case this airline is clearly not treated equitably.

2. Stochastic capacities. The second argument is a result of a stochastic setting,
wherein the future realized capacity can be quite different compared to the deter-
ministic capacity inputs used in the optimization model. In this scenario, it is possible
that controlling sector reversals might lead to a schedule which is able to mitigate the
impacts caused due to stochastic nature of future capacities.

PSfrag replacements
BOS (GDP)

LGA (No GDP)

AFP

Figure 3: Illustration of a scenario where controlling sector reversals seems appropriate.
There are multiple ATFM programs operating simultaneously. Specifically, an AFP is spa-
tially followed by an airport with a GDP (BOS) and an airport with no GDP (LGA).

On the negative side, we believe that imposing additional constraints of controlling sector
reversals will lead to two key impacts: i) increase in system delays over a solution which only
controls airport reversals; and ii) potential change in the number of airport reversals (due to
downstream effects). Thus, in this balancing act, these two consequences have to be carefully
mitigated to ensure neither one gets exacerbated.

In summary, the discussion in this section culminates with the conclusion that control-
ling sector reversals should be a secondary goal. Consequently, we propose that in the model
TFMP-Reversal, the tradeoff parameter λrs used to control sector reversals be set to a sig-
nificantly lower value as compared to the parameter λra used to control airport reversals.

Extensions. We now elaborate on how the proposed models (TFMP-Reversal and TFMP-
Overtake) can be extended to accommodate alternative objective functions.

• Incorporating alternative objective functions:
Although the models presented in this paper minimize the number of reversals and
amount of overtaking, it is possible to extend them to accommodate alternative objec-
tive functions. For instance, suppose we want to equalize the resulting reversals and
overtaking among airlines taking into account the number of flights they operate. This
can be achieved as follows:
Let dw denote the number of reversals per flight for airline w and γ denote the mean
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of the dw’s across all airlines.

dw =

( ∑
f ′∈Fw

sf,f ′

)/
|Fw|,

γ =

( ∑
w∈W

dw

)/
|W|.

Then, we add
∣∣dw−γ∣∣ term to the objective function of minimizing the total delay cost

with an appropriate tradeoff parameter.

Size of the Formulations. Denoting with

N = max
f∈F
|Sf |,

the total number of decision variables and constraints for the various models can be bounded
as listed in Table 2.

Model No. of Decision No. of
Variables Constraints

TFMP |F|MN 2|K||T |+ |S||T |+ 2|F|MN + 2|F|N +M |C|
TFMP-Reversal |F|MN + |RA| 2|K||T |+ |S||T |+ 2|F|MN + 2|F|M +M |C|+ 2|RA|M
TFMP-Overtake |F|MN +M |RA| 2|K||T |+ |S||T |+ 2|F|MN + 2|F|N +M |C|+ |RA|M

Table 2: Upper bound on the size of the models.

In order to get a feeling of the size of the formulations, let us consider an example that
adequately represents the U.S. network.

Example 3.2. Let |K| = 50, |T | = 100, |S| = 100, |RA| = 50000, |F| = 10000, |C| = 8000,
M = 6 and N = 5. The duration of each period is 15 minutes implying a planning horizon of
almost a day. For this example, the upper bound on the number of variables and constraints
are listed in Table 3.

Model No. of Decision No. of
Variables Constraints

TFMP 300,000 780,000
TFMP-Reversal 350,000 1,380,000
TFMP-Overtake 600,000 1,080,000

Table 3: Numerical Example: Upper bound on the size of the models.

Since we introduce only one class of variables sf,f ′,j for all elements (f, f ′) ∈ Rj , the
number of variables in the model (TFMP-Reversal) are comparable to the original model
(TFMP).
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4 Network model for slot reallocation that incorporates air-

line collaboration

In this section, we present a model (called TFMP-Trading) for slot reallocation in a network
setting that introduces only one additional variable per offer above the TFMP model. We
let airlines submit offers to trade slots assigned to its flights across different airports. The
executed set of trades should ensure that the resulting schedule is still feasible taking into
account all kinds of network connectivities and airspace capacities.

The set O (Set of Airline Offers)

We give next the definition of O (set of airline offers). We use a structure proposed by Vossen
and Ball [19] that allows the airlines to submit so-called “at-least, at-most” offers. Airlines
submit offers of the following kind: (fd, td′ ; fu, tu′) which means that the airline is willing to
move flight fd to a later time-period, but no later than td′ ; in return for moving flight fu to
an earlier time-period, but no later than tu′ . The destination airports of flights fd and fu
are allowed to be distinct. Figure 4 gives an example to illustrate the semantics of the offer
structure. The set O contains all such four-tuples (fd, td′ ; fu, tu′) submitted by the airlines
after a schedule is generated from Stage I of our proposal. Note that cfd

and cfu denote the
slots allotted to the two flights from Stage I, and hence, for such an offer to be useful, we
must have cfd

< td′ and cfu > tu′ . Finally, Of ⊆ O defines the set of offers containing flight
f .

PSfrag replacements
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Figure 4: Illustration of the structure of an offer (fd, td′ ; fu, tu′). destfd
= A, destfu = B,

td′ = cfd
+ 3 and tu′ = cfu − 4. The offer states that the airline is willing to delay flight fd

by at-most 3 slots if in return flight fu is moved earlier by at-least 4 slots.

4.1 (TFMP-Trading): A model for slot reallocation in a network setting

Here, we introduce our model of slot reallocation in a network setting. The model only
introduces one additional variable per offer in addition to wfj,t, which are the variables used
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in the TFMP model of Bertsimas Stock-Patterson [5].

The Decision Variables

• odd′uu′ ∈ {0, 1} = 1 if offer (fd, td′ ; fu, tu′) is executed.

Constraints

(1a)− (1g).

odd′uu′ ≤ wfd
destfd

,td′
, ∀(fd, td′ ; fu, tu′) ∈ O. (14a)

odd′uu′ ≤ wfu

destfu ,tu′
, ∀(fd, td′ ; fu, tu′) ∈ O. (14b)∑

j∈Of

oj ≤ 1, ∀f ∈ F . (14c)

wfdestf ,cf
− wfdestf ,cf−1 ≥ 1− (

∑
j∈Of

oj), ∀f ∈ F . (14d)

wfj,t ∈ {0, 1}, ∀f ∈ F , j ∈ Sf , t ∈ T fj . (14e)

odd′uu′ ∈ {0, 1}, ∀(fd, td′ ; fu, tu′) ∈ O. (14f)

Constraints (14a) and (14b) enforce that when an offer odd′uu′ is executed (i.e., odd′uu′ = 1),
then wfd

destfd
,td′

= 1 and wfu

destfu ,tu′
= 1, i.e., flights fd and fu cannot arrive after the respective

time-periods in the offer, namely, t′d and t′u. This ensures that the semantics of the structure
of an offer are satisfied. Constraint (14c) enforces that for each flight, at most one offer can
get executed. Moreover, constraint (14d) stipulates that if no offer for a flight f is executed
(i.e., oj = 0, ∀j ∈ Of ), then the flight will arrive at the time-period allotted from Stage I
(cf ).

Objective Function

In the model presented above, we have not explicitly stated the objective function that should
be used. It is evident that fairness in the number of executed offers across airlines would
again be relevant in this stage of our proposal.

Let nw denote the number of trades executed corresponding to airline w, and let γ denote
the mean of the trades executed across all airlines.

nw =
∑

f∈Fw,j∈Of

oj ,

γ =
( ∑
w∈W

nw

)/
|W|.

21



In the next section, we report computational results based on the following two objective
functions:

• Objective 1 : maximize the total number of trades (max
∑

(fd,td′ ;fu,tu′ )∈O
odd′uu′).

• Objective 2 : minimize the difference in the number of trades executed for each airline
from the mean (min

∑
w∈W |nw − γ|).

5 Integration and comparison with current CDM practice

Given that our aspiration in this research effort is to bridge the gap between theory and
practice, we now elaborate on how our proposal can be integrated within the broader CDM
paradigm currently in use. Our goal in this section is to demonstrate the practical viability
of our procedural framework and verify the compatibility of the input and output data
requirements of our models with the available operational technology.

We start by revisiting the CDM paradigm alluded to in the Introduction and provide a
detailed description of the phases involved in the coordination of various ATFM initiatives
(like GDPs and AFPs). There are three key phases involved in the decision-making process:

1. RBS for each ATFM program. FAA invokes the RBS policy to allocate arrival
slots to the airlines for each ATFM program based on the original schedule ordering.

2. Airline response to schedule disruption. Based on the slots allotted, an airline
is allowed to make changes to the schedule by canceling flights and swapping the slots
of two or more of its own flights if they are compatible with the scheduled departure
times.

3. Final coordination by the FAA. FAA accepts the relevant changes proposed by the
airlines to come up with a overall feasible schedule. This is further complemented by
Compression (wherein the FAA attempts to fill in any holes created by cancellations
to further optimize the final schedule).

We now demonstrate how our proposal can be integrated within the three-stage CDM
framework described above. To start with, we propose to filter in the flights affected by
all ATFM programs that the FAA intends to use. The trajectories of all other flights are
deterministically fixed and the capacity corresponding to them is removed from the capacity
inputs to our optimization models.

• Stage 1: Control reversals/overtaking. This stage of our proposal interfaces with
phase 1 of the CDM framework. Rather than applying RBS to each ATFM program, we
control the reversals and overtaking in the resulting flight sequences by using TFMP-
Reversal and TFMP-Overtake. The input requirements for our models, namely, the
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set of feasible times that a flight can be in a sector and the capacity inputs are readily
available from Flight Schedule Monitor (FSM)1. Furthermore, the output of our models
can be easily converted to a slot assignment for each flight (by following the scheduled
order of the slots allotted for flights during each time-period) and thus is compatible
with the current operational practice.

• Stage 2: Airline collaboration. This stage of our proposal interfaces with the
last two phases of the CDM framework. The input required from the airlines on the
offers to trade are readily available as the airlines know the slots allotted to them
from Stage 1. Moreover, airlines also propose flights cancellations (emanating from
operational infeasibility) after considering their slot assignments. The final exercise of
Compression goes through as is done presently to fill in gaps.

These two stages can be repeated (if necessary) to enable program revisions. In summary, we
believe that our proposal fits well within the CDM framework used currently and the data
input and output requirements are compatible with operational feasibility.

6 Computational Results

In this section, we report computational results from the optimization models introduced in
Section 3 and Section 4 on national-scale, real world datasets spanning across six days. The
dataset for each day encompasses 55 major airports of the US and covers operations of the
top five airlines. Each dataset contains data on the actual flight arrival and departure times
for that particular day which lets us compute the actual delays.

6.1 Statistics of the Datasets

Table 4 summarizes the statistics of six days of flights data. These correspond to the op-
erations at the 55 major airports of the US. We filter in the flights corresponding to the
operations of the top 5 airlines (measured by the number of flight operations) - Southwest
(SWA), American (AAL), Delta (DAL), United (UAL) and Northwest (NWA) to enable us
to better analyze the results.

6.2 Experimental Setup

In our experimental setup, the airspace is subdivided into sectors of equal dimensions (10 by
10) that form a grid, thereby, having a total of 100 sectors. The 55 major airports of the

1FSM is an important software technology currently used by FAA that provides users with up-to-date,

real-time information on the future flight behavior and provides common system-wide situational awareness

for all stakeholders
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Day No. of No. of Connecting Total Delay
Flights Flights (units of 15 min.)

14th Jul’04 5092 2691 4438
4th Aug’04 5844 3298 4926

13th May’05 5780 3310 3079
16th Jul’05 4590 2301 3907
27th Jul’05 5128 2728 3326
27th Jul’06 4781 2504 3101

Table 4: Summary of the datasets.

US are then mapped to one of these 100 sectors based on its geographical coordinates. For
each flight, we fix its flight trajectory (i.e., the sequence of sectors in its path) based on a
randomized shortest path from the origin to the destination airport. Using the information
on its flight time, we compute the minimum amount of time that each flight has to spend in
a sector. This value is then used to calculate the set of feasible times that a flight can be in a
sector. By tracking the tail number of an aircraft, we form the set of connecting flights. We
believe this setup represents a reasonably approximate testbed of the actual NAS operations
to study the implications of incorporating various fairness criteria and the resulting impacts
on efficiency.

For a sample day, we know the scheduled departure and arrival times of a flight as
well as what actually happened on that day. We use this to compute its ground and air-
hold delays. Further, we compute the base capacities at all the resources (airports and
sectors) by noting the actual times of departure and arrival of the flights. It is important
to note that this capacity corresponds to the exact number of flight departures and arrivals
that happened on that particular day and hence, is the most conservative estimates of the
capacity. The available capacities on that day has to be higher than the actual number of
operations. Although, data difficulties make it hard to infer the exact capacities available
for the concerned day. Nonetheless, we use educated augmented values of base capacity as
capacity inputs to run the optimization models. Specifically, we increase the capacity by a
certain percentage over the number of aircraft operations that occurred for each capacitated
resource (we use a slack of 20%). This ensures that the weather impact across the airspace
is captured.

A critical parameter of the optimization models is the maximum permissible delay for
a flight (M). This value is used to define the set of feasible times that a flight can be in
a particular sector. For example, the set of feasible times that a flight f can arrive at its
destination airport is given by all values in akf through (akf +M), where destf = k. The size of
all the optimization models and hence, the computational times, are directly proportional to
the value of M (e.g., for M ≥ 10, the number of variables and constraints quickly scale up to
the order of millions). The use of this parameter is not motivated from equity considerations
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and has no consequences on the fairness properties of the resulting schedules. We use a value
of M = 6, which corresponds to 6 time periods (each of length 15 minutes), hence permitting
a maximum delay of 90 minutes.

Remark 3. While a small value of M will facilitate the computational efficiency of the op-
timization models, the framework is generic enough to allow for a larger value of M for a
select set of flights for which higher delays are expected (or desired).

To compute optimal solutions, we use the CPLEX-MIP solver 11.0, implemented using
AMPL as a modeling language on a laptop with 2 GB RAM and Linux Ubuntu OS. The
instances reported in this paper have a typical size of the order of 300,000 variables (this in-
creases significantly for TFMP-Overtake) and 800,000 constraints (this increases significantly
for TFMP-Reversal).

6.3 Performance of (TFMP)

Table 5 reports solutions from the (TFMP) model for the case when the capacity used is
20% over and above the actual number of aircraft operations. There is an average reduction
of 23% in the total absolute delays. This illustrates the benefits that could be achieved
by using a centralized optimization-based approach. Furthermore, the number of reversals
consistently range between 500 and 1000 and amount of overtaking range between 800 and
1500 across all days. This confirms that, although, there can be significant benefits in the
total delay costs by using the model (TFMP), the number of reversals and overtaking might
be high.

Day No. of Actual Delay TFMP Delay Number of Amount of
Flights (units of 15 min.) (units of 15 min.) Reversals Overtaking

14 Jul’04 5092 4438 3385 915 1492
4 Aug’04 5844 4926 3492 924 1426

13 May’05 5780 3079 2242 753 1191
16 Jul’05 4590 3907 3053 769 1235
27 Jul’05 5128 3326 2648 801 1291
27 Jul’06 4781 3101 2542 526 822

Table 5: Performance of (TFMP).

6.4 Performance of (TFMP-Overtake)

Table 6 reports the computational performance of (TFMP-Overtake) model on the six
datasets. These results pertain to the parameter λoa set to 100. The number reported under
‘Total overtaking’ takes into account the relative magnitudes of overtaking within each re-
versal, i.e., the number of time periods by which a flight overtakes its preceding flight when
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a reversal occurs. The degradation in total delay costs from (TFMP-Overtake) model over
the (TFMP) solution range between 13% and 41% for fairness at 25 airports, the average
being 24.5%. The model on average takes less than 30 minutes to converge to optimality for
up to 25 airports.

Day No. of Solution Total Delay % Increase in
(# of Airports Time No. of Total Cost (units Delay Cost
Flights) with Fairness (sec.) Reversals Overtaking of 15 min.) over (TFMP)

0 261 915 1492 3525
14 Jul 5 186 2 4 3690 4.68
2004 15 727 13 27 4243 20.36
(5092) 25 3073 26 39 4662 32.25

30 3600 39 65 4815 36.59
0 108 924 1426 3604

4 Aug 5 206 1 2 3802 5.49
2004 15 596 6 9 4029 11.79
(5844) 25 806 9 12 4080 13.20

30 3530 16 18 4510 25.13
0 311 753 1191 2313

13 May 5 170 3 6 2401 3.80
2005 15 397 8 18 2584 11.71
(5780) 25 295 11 22 2651 14.61

30 3394 17 28 3096 33.85
0 51 769 1235 3173

16 Jul 5 150 1 1 3628 14.33
2005 15 746 5 6 4201 32.39
(4590) 25 691 13 18 4452 40.30

30 3600 29 33 4743 49.47
0 178 801 1291 2744

27 Jul 5 116 0 0 2871 4.62
2005 15 492 10 18 3319 20.95
(5128) 25 1983 17 26 3505 27.73

30 3600 25 36 3804 38.62
0 49 526 822 2637

27 Jul 5 143 5 7 2826 7.16
2006 15 378 9 15 3070 16.42
(4781) 25 479 15 22 3145 19.26

30 1305 28 49 3383 28.28

Table 6: Computational performance of (TFMP-Overtake). Note that the row with k airports
corresponds to imposing fairness at k airports and no fairness at the remaining |K|−k airports.
In particular, k = 0 corresponds to the (TFMP) solution.

6.5 Performance of (TFMP-Reversal)

The (TFMP-Reversal) model minimizes a weighted combination of total delay costs and total
number of reversals where λra is the weight parameter. We study the tradeoff inherent in
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these conflicting objectives in two ways - a) as a function of the tradeoff parameter λra and
b) as a function of the number of airports where this fairness criterion is imposed.

The effect of the tradeoff parameter

Figure 5 plots the tradeoff in the number of reversals with the total delay cost as a function
of λra for fairness based on controlling total reversals imposed at 25 airports. The five points
on the plot for each day correspond to the result from (TFMP-Reversal) with λra = 0, 1, 10,
100 and 1000. Initially, there is a significant reduction in the number of reversals at the cost
of a small increase in total delay cost, but the subsequent benefits in the number of reversals
come at a high cost. For all days, the model is able to achieve less than 100 reversals for a
degradation of at most 10% in the total delay cost. To achieve reversals between 10 and 30,
the degradation in total delay costs range between 10% and 40% across all days.
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Figure 5: Effect of the tradeoff parameter λra. The five points for each day correspond to the

result from (TFMP-Reversal) with λra = 0, 1, 10, 100 and 1000.

The effect of the number of airports

Table 7 reports the computational performance of the (TFMP-Reversal) model on the six
datasets as a function of the number of airports where this fairness criterion is imposed. These
results pertain to the tradeoff parameter λra set to 100. As is evident from the results reported
across all days, the number of reversals can be controlled up to 10-30. The degradation in
total delay costs from (TFMP-Reversal) model over the (TFMP) solution range between
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13% and 40% for fairness at 25 airports, the average being 24.5%. The model on average
takes less than 30 minutes to converge to optimality for up to 25 airports. As expected, the
total amount of reversals reported in Table 7 is always less than the corresponding number
in Table 6, whereas the opposite is true for the amount of overtaking.

Day No. of Solution Total Delay % Increase in
(# of Airports Time No. of Total Cost (units Delay Cost
Flights) with Fairness (sec.) Reversals Overtaking of 15 min.) over (TFMP)

0 261 915 1492 3525
14 Jul 5 228 2 4 3691 4.70
2004 15 899 13 30 4246 20.45
(5092) 25 3600 25 53 4402 24.87

30 3600 37 84 4586 30.09
0 108 924 1426 3604

4 Aug 5 213 1 2 3785 5.02
2004 15 837 6 9 4028 11.76
(5844) 25 1024 9 12 4077 13.12

30 3600 16 30 4403 22.16
0 311 753 1191 2313

13 May 5 219 3 6 2406 4.02
2005 15 282 8 19 2583 11.67
(5780) 25 384 11 24 2648 14.48

30 3600 15 35 3048 31.77
0 51 769 1235 3173

16 Jul 5 165 1 1 3627 14.30
2005 15 1367 5 10 4138 30.41
(4590) 25 2292 12 22 4468 40.81

30 3600 29 55 4558 43.64
0 178 801 1291 2744

27 Jul 5 225 0 0 2866 4.44
2005 15 654 10 24 3319 20.95
(5128) 25 1556 16 35 3504 27.69

30 3600 25 38 3925 43.03
0 49 526 822 2637

27 Jul 5 213 5 7 2836 7.54
2006 15 751 9 16 3059 16.00
(4781) 25 654 15 25 3125 18.50

30 3600 28 51 3387 28.44

Table 7: Computational performance of (TFMP-Reversal). Note that the row with k airports
corresponds to imposing fairness at k airports and no fairness at the remaining |K|−k airports.
In particular, k = 0 corresponds to the (TFMP) solution.

The computational times of both (TFMP-Reversal) and (TFMP-Overtake) are consis-
tently less than 30 minutes for up to 25 airports, but they break down when we impose
fairness at 30 airports and above. We believe that this is due to memory limitations. Given
the fact that for some instances, the computational times are still prohibitively large, we

28



study the times needed to achieve a solution that is within 20% of the optimal. In all cases,
we could achieve feasible solutions satisfying this optimality criterion in less than 15 minutes.

6.6 Controlling sector reversals and balancing with airport reversals

As concluded in Section 3, we believe that controlling airport reversals (and overtaking) is
our primary objective, and controlling sector reversals represents a secondary goal. In this
section, we study the interaction of the two objectives with the aim to quantify the price
of controlling sector reversals (on airport reversals and total delay cost). Our setup for this
exercise comprises of controlling reversals in 5 sectors of the north-east region of the US and
a set of 10 airports that lie spatially close to these sectors (we believe this would be the
typical setting with multiple AFPs and GDPs operating simultaneously). Table 8 reports
the sector reversals, airport reversals and total delay cost for different combinations of the
tradeoff parameters λsr and λar .

The left plot in Figure 6 is a box plot quantifying the percentage increase in the number
of airport reversals and the delay cost by enforcing the additional control on sector reversals
for the tradeoff parameter λsr = 10. The percentage increase in delay cost lies between 5%
and 20% with a mean of around 13%, whereas the percentage increase in airport reversals
is around 5%. Moreover, the sector reversals can be reduced from the order of 1000s to 10s.
In contrast, for λsr = 1, the average increase in the total delay cost is 3% on average but
the sector reversals are still in the 100s. The right plot in Figure 6 depicts the reduction
in number of sector reversals possible by this explicit control (potential reduction from four
digit reversals to two digit reversals).

Consequently, our overall conclusion regarding control of sector reversals is as follows:

1. We have developed a model capable of controlling sector reversals in conjunction with
airport reversals.

2. We believe controlling sector reversals is a secondary goal after achieving the primary
objective of controlling airport reversals. This is validated by our computational exper-
iments of the form presented here (the impact on total delay cost is substantial (13% on
average) for large λsr (=10) and is relatively small (3% on average) for small λsr (=1)).

6.7 Interaction with super-linear cost coefficients

We used super-linear cost coefficients in the overall objective function as additional means to
impose equity. As explained earlier in Section 2, this eliminates flights with extreme delays.
Since, our primary fairness proposal is controlling reversals and overtaking, we study the
interaction of super-linear cost coefficients with this fairness criteria.
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λs
r = 0, λa

r = 100 λs
r = 1, λa

r = 100 λs
r = 10, λa

r = 100

Day Sector Airport Delay Sector Airport Delay Sector Airport Delay

Revs Revs Cost Revs Revs Cost Revs Revs Cost

14 Jul’04 3174 8 3780 253 11 3865 127 12 4261

4 Aug’04 3455 6 3860 169 8 3944 59 8 4235

13 May’05 1289 9 2486 58 9 2493 14 10 2631

16 Jul’05 3242 5 3663 326 6 3874 136 4 4292

27 Jul’05 1646 0 2897 268 0 2958 75 1 3456

27 Jul’06 1615 10 2832 144 10 2907 46 9 3235

Table 8: Balancing Sector Reversals with Airport Reversals (Revs stand for Reversals).

Fairness imposed in 5 sectors of the north-east region and 10 airports spatially close to these

sectors.
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30



The left plot in Figure 7 is a box plot quantifying the percentage increase in the number
of airport reversals and the total delay by using super-linear coefficients over the solution
obtained using linear coefficients (i.e., ε = 0). The percentage increase in reversals consis-
tently lies between -2% and 2% with a mean of around 0.3%. Furthermore, the total delays
never differ by more than 1% with a mean difference of 0.1%. This highlights that using
super-linear coefficients causes insignificant changes to the fairness and delay characteristics
of the resulting schedules. The right side of Figure 7 is a table depicting the distribution
of delays across flights. As is evident, the use of super-linear coefficients induces a more
moderate assignment of delays in contrast to linear coefficients which lead to more flights
with either 0 (minimum) or 6 (maximum) units of delay.

In summary, the use of super-linear cost coefficients achieves its objective of reducing
flights with extreme delays while not causing any material changes to the number of reversals
and total delay cost.
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6.8 Performance of slot reallocation model (TFMP-Trading)

Given the assignment of flights to various time-periods from Stage I, we generate offers to
trade for each airline which maximizes its on-time performance. In other words, each airline
tries to maximize the number of flights with delay less than one time-unit (15 minutes). We
give an example to elaborate on this.

Example 6.1. Suppose two flights f1 and f2 (belonging to the same airline) have been

assigned two time-units of delay each from Stage I optimization. Moreover, let t1 and t2 be

the time-periods assigned to the two flights respectively. Then, the owner airline generates

an offer to trade which says that it is willing to delay flight f1 further by three time-units

31



if in return flight f2 can arrive within one time-unit of delay, i.e., it generates the offer

(f1, t1 + 3; f2, t2− 1). Thus, in case, this trade is executed, then flight f2 will arrive on-time,

thereby improving the internal objective function of the airline (which is to maximize the

on-time performance).

Table 9 reports the results from our network slot reallocation model (TFMP-Trading).
As is evident, the computational times of the model TFMP-Trading is consistently less than
a minute which is encouraging for practical deployment. Figure 8 plots the distribution of
the number of executed trades across airlines from TFMP-Trading for the two objectives.
Not surprisingly, when fairness is not imposed (Objective 1 ), the distribution is quite skewed
(e.g., for Day 1, Airline 5 gets almost three times more trades executed than Airline 1). In
contrast, when fairness is explicitly incorporated (Objective 2 ), all airlines get exactly the
same number of trades executed.

Comparison of TFMP-Trading between single-airport and network-wide settings

In this section, we contrast the performance of TFMP-Trading between single-airport and
network-wide settings. It is evident that in the network version, there is a tradeoff between
the flexibility of trading slots at different airports versus the added constraint of satisfying all
network connectivities. In contrast, in a single-airport setting, there is the advantage of not
having to satisfy the network connectivity requirements at the expense of losing on trades
across different airports. So, to compare the two settings, we divide the set of generated
offers between local and network offers as defined below.

Definition 6.1. An offer (fd, td′ ; fu, tu′) ∈ O is

• a local offer if both the flights involved have the same destination airport, i.e., destfd
=

destfu .

• a network offer if the destination airports of the two flights are distinct, i.e., destfd
6=

destfu .

Hence, the single-airport model will not have any executed trades that correspond to the
network offers. Our overall goal is to demonstrate the utility of TFMP-Trading in executing
trades across offers containing distinct airports. Table 10 reports the results from the two
versions under the two objectives described in Section 4.1. The number reported under
TFMP-Trading is the number of offers executed from the network model proposed in this
paper, whereas, SA-Trading (SA stands for single-airport) reports the results obtained from
TFMP-Trading after removing all the network satisfiability constraints and only taking into
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account the local offers. The numbers reported highlight the tradeoffs inherent in ignoring the
network effects vis-a-vis trading slots at different airports. As the percentage of local offers
increases, SA-Trading outperforms TFMP-Trading emphasizing that network connectivities
are indeed relevant, whereas, for higher fraction of network offers, TFMP-Trading performs
better reinforcing the utility of network offers. Finally, the number of trades executed with
Objective 2 (when fairness is included) are less than 1 Objective which is along expected
lines and demonstrate the flexibility of choosing alternative objective functions.

Objective 1 Objective 2

Day Objective Offers Sol. Time Objective Offers Sol. Time

Cost Executed (in sec.) Cost Executed (in sec.)

14 Jul’04 283 283 13 0 190 29

4 Aug’04 256 256 14 0 180 31

13 May’05 150 150 5 0 140 19

16 Jul’05 278 278 11 0 215 27

27 Jul’05 194 194 9 0 140 22

27 Jul’06 153 153 6 0 90 16

Table 9: Computational performance of TFMP-Trading.
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% Local % Network No. of Offers Executed (Obj. 1) No. of Offers Executed (Obj. 2)

Offers Offers SA-Trading TFMP-Trading SA-Trading TFMP-Trading

0 100 0 281 0 190

25 75 152 255 130 90

50 50 221 241 175 125

75 25 269 238 195 120

100 0 308 258 240 175

Table 10: Comparison of TFMP-Trading between single-airport and network-wide settings.

6.9 Summary of computations

To summarize, TFMP (the optimization model without fairness) is able to reduce the total
delays by 23% on average when we take reasonable estimates on the available capacity (in-
creasing it by 20% from the actual number of flight operations). In Stage I of our proposal,
we obtain solutions that are able to control the total reversals and overtaking at airports
up to less than 100 (from the models TFMP-Reversal and TFMP-Overtake respectively).
In addition, we report promising computational times of less than 30 minutes for up to 25
airports from both models which make them well suited for online use. Furthermore, we
also demonstrate the ability to control sector reversals and conclude that this should be a
secondary objective because of the prohibitively large increase in delay cost (13% on average
in the setting analyzed in this paper). In Stage II of our proposal, there are 220 trades
executed on average when the objective function used is to maximize the number of trades,
and 160 when we impose fairness. This reinforces the utility of the slot reallocation phase of
our proposal as the airlines are able to increase the number of flights arriving on-time.

7 Conclusions

In this paper, we present a proposal that extends the CDM framework from an airport
setting to an airspace context while explicitly incorporating fairness and airline collaboration.
Specifically, in Stage I of our proposal, we introduce models for the ATFM problem that
incorporate notions of fairness. Given a schedule from this stage, in Stage II, we propose
an optimization model for slot reallocation to mimic the current substitution-cancellation
process in a GDP setting. Further, we report empirical results of the proposed models on
national-scale, real world datasets. We feel the key advantages of our proposal are high-
quality of solutions, consideration of network effects and promising computational times
which ensure practical tractability in real-time settings.
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Appendix

Strength of TFMP-Reversal:
Let us denote the polyhedron induced by the the additional set of constraints to model a
reversal for each element (f, f ′) ∈ Rj as PReversal(f, f ′, j).

Proposition 1. The polyhedron PReversal(f, f ′, j) is integral.

Proof. PReversal(f, f ′, j) can be written as follows:

PReversal(f, f ′, j) =
{
x = (wfj,t, sf,f ′,j)| 0 ≤ wfj,t ≤ 1, 0 ≤ sf,f ′,j ≤ 1,

wf
′

j,t − w
f
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wfj,t − w
f ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}
We make use of the following two facts from discrete optimization [8]:

Fact 1. Let A be an integral matrix. A is totally unimodular if and only if

{x| a ≤ Ax ≤ b, l ≤ x ≤ u} is integral, for all integral vectors a, b, l, u.

Fact 2. A matrix A is totally unimodular if and only if each collection Q of rows of A can

be partitioned into two parts so that the sum of the rows in one part minus the sum of the

rows in the other part is a vector with entries only 0, +1 and -1.

Consider the following polyhedron P and let A be the matrix such that P = {x|Ax ≤ b}:

P =
{
x = (wfj,t, sf,f ′,j)|

wf
′

j,t − w
f
j,t − sf,f ′,j ≤ 0, t ∈ T reversal

f,f ′,j ,

wfj,t − w
f ′

j,t + sf,f ′,j ≤ 1, t ∈ T reversal
f,f ′,j .

}
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A =



1 −1 0 0 0 · · · · · · 0 −1

−1 1 0 0 0 · · · · · · 0 1

0 0 1 −1 0 · · · · · · 0 −1

0 0 −1 1 0 · · · · · · 0 1
...

...
. . . . . . . . . . . .

...
... −1

...
...

. . . . . . . . . . . .
...

... 1

0 0 · · · · · · 0 0 1 −1 −1

0 0 · · · · · · 0 0 −1 1 1



(15)

The matrix A has a special structure. If we remove the last column, the remaining matrix

is a network matrix.

Let B1, B2, . . . , Bn be consecutive blocks of two rows each, i.e., block Bk contains the

rows 2k− 1 and 2k. For any collection Q of rows of the matrix A, we show how to partition

it into two parts J1 and J2 so that the sum of the rows in J1 minus sum of the rows in J2 is

a vector with entries 0, +1 and -1 only. Suppose Q contains both the rows of some block Bi,

then, put both these rows in J1. The remaining rows (say m) in Q then come from different

blocks, call them Rj1 , Rj2 , . . . , Rjm . These m rows are partitioned as follows:

Let Q+ be the subset of these m rows where the last element is +1 and Q− be those rows

where the last element is -1. Then, put d |Q+|
2 e rows of Q+ in J1 and the remaining rows in

J2. Similarly, put d |Q−|2 e rows of Q− in J1 and the remaining rows in J2. Since the sum of

two rows in the same block is all zeroes, therefore, all such blocks in J1 do not affect the

sum of all the rows in J1. Let T denote the vector resulting from the sum of the rows in J1

minus the sum of the rows in J2. All the elements except the last one in T is exactly 0, +1

or -1 because of the structure of the matrix A. The contribution of the rows from Q+ to the

last element of T is either 0 or +1. Similarly, the contribution of the rows from Q− to the

last element of T is either -1 or 0. This implies that the last element of T which is the sum

of these two contributions can either be +1, -1 or 0.

This shows that the matrix A is totally unimodular. Using Fact 1, we conclude that

PReversal(f, f ′, j) is integral.
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